pub struct Bfs<N, VM> {
    pub stack: VecDeque<N>,
    pub discovered: VM,
}Expand description
A breadth first search (BFS) of a graph.
The traversal starts at a given node and only traverses nodes reachable from it.
Bfs is not recursive.
Bfs does not itself borrow the graph, and because of this you can run
a traversal over a graph while still retaining mutable access to it, if you
use it like the following example:
use petgraph::Graph;
use petgraph::visit::Bfs;
let mut graph = Graph::<_,()>::new();
let a = graph.add_node(0);
let mut bfs = Bfs::new(&graph, a);
while let Some(nx) = bfs.next(&graph) {
    // we can access `graph` mutably here still
    graph[nx] += 1;
}
assert_eq!(graph[a], 1);Note: The algorithm may not behave correctly if nodes are removed during iteration. It may not necessarily visit added nodes or edges.
Fields
stack: VecDeque<N>The queue of nodes to visit
discovered: VMThe map of discovered nodes
Implementations
sourceimpl<N, VM> Bfs<N, VM> where
    N: Copy + PartialEq,
    VM: VisitMap<N>, 
 
impl<N, VM> Bfs<N, VM> where
    N: Copy + PartialEq,
    VM: VisitMap<N>, 
sourcepub fn new<G>(graph: G, start: N) -> Self where
    G: GraphRef + Visitable<NodeId = N, Map = VM>, 
 
pub fn new<G>(graph: G, start: N) -> Self where
    G: GraphRef + Visitable<NodeId = N, Map = VM>, 
Create a new Bfs, using the graph’s visitor map, and put start in the stack of nodes to visit.
sourcepub fn next<G>(&mut self, graph: G) -> Option<N> where
    G: IntoNeighbors<NodeId = N>, 
 
pub fn next<G>(&mut self, graph: G) -> Option<N> where
    G: IntoNeighbors<NodeId = N>, 
Return the next node in the bfs, or None if the traversal is done.
Trait Implementations
sourceimpl<G> Walker<G> for Bfs<G::NodeId, G::Map> where
    G: IntoNeighbors + Visitable, 
 
impl<G> Walker<G> for Bfs<G::NodeId, G::Map> where
    G: IntoNeighbors + Visitable, 
type Item = G::NodeId
sourcefn iter(self, context: Context) -> WalkerIter<Self, Context>ⓘNotable traits for WalkerIter<W, C>impl<W, C> Iterator for WalkerIter<W, C> where
    W: Walker<C>,
    C: Clone,     type Item = W::Item; where
    Self: Sized,
    Context: Clone, 
 
fn iter(self, context: Context) -> WalkerIter<Self, Context>ⓘNotable traits for WalkerIter<W, C>impl<W, C> Iterator for WalkerIter<W, C> where
    W: Walker<C>,
    C: Clone,     type Item = W::Item; where
    Self: Sized,
    Context: Clone, 
W: Walker<C>,
C: Clone, type Item = W::Item;
Create an iterator out of the walker and given context.
Auto Trait Implementations
impl<N, VM> RefUnwindSafe for Bfs<N, VM> where
    N: RefUnwindSafe,
    VM: RefUnwindSafe, 
impl<N, VM> Send for Bfs<N, VM> where
    N: Send,
    VM: Send, 
impl<N, VM> Sync for Bfs<N, VM> where
    N: Sync,
    VM: Sync, 
impl<N, VM> Unpin for Bfs<N, VM> where
    N: Unpin,
    VM: Unpin, 
impl<N, VM> UnwindSafe for Bfs<N, VM> where
    N: UnwindSafe,
    VM: UnwindSafe, 
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
    T: ?Sized, 
 
impl<T> BorrowMut<T> for T where
    T: ?Sized, 
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
 
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<T> ToOwned for T where
    T: Clone, 
 
impl<T> ToOwned for T where
    T: Clone, 
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcefn clone_into(&self, target: &mut T)
 
fn clone_into(&self, target: &mut T)
toowned_clone_into)Uses borrowed data to replace owned data, usually by cloning. Read more