1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
// Copyright (c) The Diem Core Contributors
// Copyright (c) The Move Contributors
// SPDX-License-Identifier: Apache-2.0

use crate::{
    cfgir::{
        ast::{BasicBlock, BasicBlocks, BlockInfo, LoopEnd, LoopInfo},
        remove_no_ops,
    },
    diag,
    diagnostics::Diagnostics,
    hlir::ast::{Command, Command_, Exp, ExpListItem, Label, UnannotatedExp_, UnitCase},
    shared::ast_debug::*,
};
use move_ir_types::location::*;
use std::{
    cmp::Reverse,
    collections::{BTreeMap, BTreeSet, BinaryHeap, VecDeque},
};

//**************************************************************************************************
// CFG
//**************************************************************************************************

pub trait CFG {
    fn successors(&self, label: Label) -> &BTreeSet<Label>;

    fn predecessors(&self, label: Label) -> &BTreeSet<Label>;
    fn commands<'a>(&'a self, label: Label) -> Box<dyn Iterator<Item = (usize, &'a Command)> + 'a>;
    fn num_blocks(&self) -> usize;
    fn start_block(&self) -> Label;

    fn next_block(&self, label: Label) -> Option<Label>;

    fn is_loop_head(&self, label: Label) -> bool;

    fn is_back_edge(&self, cur: Label, next: Label) -> bool;

    fn debug(&self);
}

//**************************************************************************************************
// BlockCFG
//**************************************************************************************************

#[derive(Debug)]
pub struct BlockCFG<'a> {
    start: Label,
    blocks: &'a mut BasicBlocks,
    successor_map: BTreeMap<Label, BTreeSet<Label>>,
    predecessor_map: BTreeMap<Label, BTreeSet<Label>>,
    traversal_order: Vec<Label>,
    traversal_successors: BTreeMap<Label, Label>,
    loop_heads: BTreeMap<Label, BTreeSet<Label>>,
}

impl<'a> BlockCFG<'a> {
    // Returns
    // - A CFG
    // - A set of infinite loop heads
    // - and any errors resulting from building the CFG
    pub fn new(
        start: Label,
        blocks: &'a mut BasicBlocks,
        block_info: &[(Label, BlockInfo)],
    ) -> (Self, BTreeSet<Label>, Diagnostics) {
        let mut cfg = BlockCFG {
            start,
            blocks,
            successor_map: BTreeMap::new(),
            predecessor_map: BTreeMap::new(),
            traversal_order: vec![],
            traversal_successors: BTreeMap::new(),
            loop_heads: BTreeMap::new(),
        };
        remove_no_ops::optimize(&mut cfg);

        // no dead code
        let dead_code = cfg.recompute();
        let mut diags = Diagnostics::new();
        for (_lbl, block) in dead_code {
            dead_code_error(&mut diags, &block)
        }

        let infinite_loop_starts = determine_infinite_loop_starts(&cfg, block_info);
        (cfg, infinite_loop_starts, diags)
    }

    /// Recomputes successor/predecessor maps. returns removed, dead blocks
    pub fn recompute(&mut self) -> BasicBlocks {
        let blocks = &self.blocks;
        let mut seen = BTreeSet::new();
        let mut work_list = VecDeque::new();
        seen.insert(self.start);
        work_list.push_back(self.start);

        // build successor map from reachable code
        let mut successor_map = BTreeMap::new();
        while let Some(label) = work_list.pop_front() {
            let last_cmd = blocks.get(&label).unwrap().back().unwrap();
            let successors = last_cmd.value.successors();
            for successor in &successors {
                if !seen.contains(successor) {
                    seen.insert(*successor);
                    work_list.push_back(*successor)
                }
            }
            let old = successor_map.insert(label, successors);
            assert!(old.is_none());
        }

        // build inverse map
        let mut predecessor_map = successor_map
            .keys()
            .cloned()
            .map(|lbl| (lbl, BTreeSet::new()))
            .collect::<BTreeMap<_, _>>();
        for (parent, children) in &successor_map {
            for child in children {
                predecessor_map.get_mut(child).unwrap().insert(*parent);
            }
        }
        self.successor_map = successor_map;
        self.predecessor_map = predecessor_map;

        let (mut post_order, back_edges) = post_order_traversal(
            self.start,
            blocks.keys().copied(),
            &self.successor_map,
            /* include_dead_code */ false,
        );

        self.traversal_order = {
            post_order.reverse();
            post_order
        };
        assert_eq!(self.traversal_order[0], self.start);
        // build a mapping from a block id to the next block id in the traversal order
        self.traversal_successors = self
            .traversal_order
            .windows(2)
            .map(|window| {
                debug_assert!(window.len() == 2);
                (window[0], window[1])
            })
            .collect();
        self.loop_heads = BTreeMap::new();
        for (id, loop_head) in back_edges {
            debug_assert!(id.0 >= loop_head.0);
            self.loop_heads.entry(loop_head).or_default().insert(id);
        }

        // determine dead blocks
        let mut dead_block_labels = vec![];
        for label in self.blocks.keys() {
            if !self.successor_map.contains_key(label) {
                assert!(!self.predecessor_map.contains_key(label));
                assert!(!self.traversal_successors.contains_key(label));
                dead_block_labels.push(*label);
            }
        }

        let mut dead_blocks = BasicBlocks::new();
        for label in dead_block_labels {
            dead_blocks.insert(label, self.blocks.remove(&label).unwrap());
        }
        dead_blocks
    }

    pub fn blocks(&self) -> &BasicBlocks {
        self.blocks
    }

    pub fn blocks_mut(&mut self) -> &mut BasicBlocks {
        &mut self.blocks
    }

    pub fn block(&self, label: Label) -> &BasicBlock {
        self.blocks.get(&label).unwrap()
    }

    pub fn block_mut(&mut self, label: Label) -> &mut BasicBlock {
        self.blocks.get_mut(&label).unwrap()
    }

    pub fn display_blocks(&self) {
        for (lbl, block) in self.blocks() {
            println!("--BLOCK {}--", lbl);
            for cmd in block {
                println!("{:#?}", cmd.value);
            }
            println!();
        }
    }
}

impl<'a> CFG for BlockCFG<'a> {
    fn successors(&self, label: Label) -> &BTreeSet<Label> {
        self.successor_map.get(&label).unwrap()
    }

    fn predecessors(&self, label: Label) -> &BTreeSet<Label> {
        self.predecessor_map.get(&label).unwrap()
    }

    fn commands<'s>(&'s self, label: Label) -> Box<dyn Iterator<Item = (usize, &'s Command)> + 's> {
        Box::new(self.block(label).iter().enumerate())
    }

    fn num_blocks(&self) -> usize {
        self.blocks.len()
    }

    fn start_block(&self) -> Label {
        self.start
    }

    fn next_block(&self, label: Label) -> Option<Label> {
        self.traversal_successors.get(&label).copied()
    }

    fn is_loop_head(&self, label: Label) -> bool {
        self.loop_heads.contains_key(&label)
    }

    fn is_back_edge(&self, cur: Label, next: Label) -> bool {
        self.loop_heads
            .get(&next)
            .map_or(false, |back_edge_predecessors| {
                back_edge_predecessors.contains(&cur)
            })
    }

    fn debug(&self) {
        crate::shared::ast_debug::print(self);
    }
}

const DEAD_ERR_CMD: &str =
    "Unreachable code. This statement (and any following statements) will not be executed.";

const DEAD_ERR_EXP: &str = "Invalid use of a divergent expression. The code following the \
                            evaluation of this expression will be dead and should be removed.";

fn dead_code_error(diags: &mut Diagnostics, block: &BasicBlock) {
    let first_command = block.front().unwrap();
    match unreachable_loc(first_command) {
        Some(loc) => diags.add(diag!(UnusedItem::DeadCode, (loc, DEAD_ERR_EXP))),
        None if is_implicit_control_flow(block) => (),
        None => diags.add(diag!(
            UnusedItem::DeadCode,
            (first_command.loc, DEAD_ERR_CMD)
        )),
    }
}

fn unreachable_loc(sp!(_, cmd_): &Command) -> Option<Loc> {
    use Command_ as C;
    match cmd_ {
        C::Assign(_, e) => unreachable_loc_exp(e),
        C::Mutate(el, er) => unreachable_loc_exp(el).or_else(|| unreachable_loc_exp(er)),
        C::Return { exp: e, .. }
        | C::Abort(e)
        | C::IgnoreAndPop { exp: e, .. }
        | C::JumpIf { cond: e, .. } => unreachable_loc_exp(e),
        C::Jump { .. } => None,
        C::Break | C::Continue => panic!("ICE break/continue not translated to jumps"),
    }
}

fn unreachable_loc_exp(parent_e: &Exp) -> Option<Loc> {
    use UnannotatedExp_ as E;
    match &parent_e.exp.value {
        E::Unreachable => Some(parent_e.exp.loc),
        E::Unit { .. }
        | E::Value(_)
        | E::Constant(_)
        | E::Spec(_, _)
        | E::UnresolvedError
        | E::BorrowLocal(_, _)
        | E::Copy { .. }
        | E::Move { .. } => None,
        E::ModuleCall(mcall) => unreachable_loc_exp(&mcall.arguments),
        E::Builtin(_, e)
        | E::Vector(_, _, _, e)
        | E::Freeze(e)
        | E::Dereference(e)
        | E::UnaryExp(_, e)
        | E::Borrow(_, e, _)
        | E::Cast(e, _) => unreachable_loc_exp(e),

        E::BinopExp(e1, _, e2) => unreachable_loc_exp(e1).or_else(|| unreachable_loc_exp(e2)),

        E::Pack(_, _, fields) => fields.iter().find_map(|(_, _, e)| unreachable_loc_exp(e)),

        E::ExpList(es) => es.iter().find_map(unreachable_loc_item),
    }
}

fn unreachable_loc_item(item: &ExpListItem) -> Option<Loc> {
    match item {
        ExpListItem::Single(e, _) | ExpListItem::Splat(_, e, _) => unreachable_loc_exp(e),
    }
}

fn is_implicit_control_flow(block: &BasicBlock) -> bool {
    use Command_ as C;
    use UnannotatedExp_ as E;
    block.len() == 1
        && match &block.front().unwrap().value {
            C::Jump { from_user, .. } => !*from_user,
            C::Return { exp: e, from_user } if !*from_user => matches!(
                &e.exp.value,
                E::Unit {
                    case: UnitCase::Implicit
                }
            ),
            _ => false,
        }
}

// Relying on the ordered block info (ordered in the linear ordering of the source code)
// Determines the infinite loop starts
// This cannot be determined in earlier passes due to dead code
fn determine_infinite_loop_starts(
    cfg: &BlockCFG,
    block_info: &[(Label, BlockInfo)],
) -> BTreeSet<Label> {
    // Filter dead code
    let block_info = block_info
        .iter()
        .filter(|(lbl, _info)| cfg.blocks().contains_key(lbl))
        .collect::<Vec<_>>();

    // Fully populate infinite loop starts to be pruned later
    // And for any block, determine the current loop
    let mut infinite_loop_starts = BTreeSet::new();

    let mut loop_stack: Vec<(Label, LoopEnd)> = vec![];
    let mut current_loop_info = Vec::with_capacity(block_info.len());
    for (lbl, info) in &block_info {
        match loop_stack.last() {
            Some((_, cur_loop_end)) if cur_loop_end.equals(*lbl) => {
                loop_stack.pop();
            }
            _ => (),
        }

        match info {
            BlockInfo::Other => (),
            BlockInfo::LoopHead(LoopInfo { is_loop_stmt, .. }) if !*is_loop_stmt => (),
            BlockInfo::LoopHead(LoopInfo { loop_end, .. }) => {
                infinite_loop_starts.insert(*lbl);
                loop_stack.push((*lbl, *loop_end))
            }
        }

        current_loop_info.push(loop_stack.last().cloned());
    }

    // Given the loop info for any block, determine which loops are infinite
    // Each 'loop' based loop starts in the set, and is removed if it's break is used, or if a
    // return or abort is used
    let mut prev_opt: Option<Label> = None;
    let zipped =
        block_info
            .into_iter()
            .zip(current_loop_info)
            .filter_map(|(block_info, cur_loop_opt)| {
                cur_loop_opt.map(|cur_loop| (block_info, cur_loop))
            });
    for ((lbl, _info), (cur_loop_start, cur_loop_end)) in zipped {
        debug_assert!(prev_opt.map(|prev| prev.0 < lbl.0).unwrap_or(true));
        maybe_unmark_infinite_loop_starts(
            &mut infinite_loop_starts,
            cur_loop_start,
            cur_loop_end,
            &cfg.blocks()[lbl],
        );
        prev_opt = Some(*lbl);
    }

    infinite_loop_starts
}

fn maybe_unmark_infinite_loop_starts(
    infinite_loop_starts: &mut BTreeSet<Label>,
    cur_loop_start: Label,
    cur_loop_end: LoopEnd,
    block: &BasicBlock,
) {
    use Command_ as C;
    // jumps/return/abort are only found at the end of the block
    match &block.back().unwrap().value {
        C::Jump { target, .. } if cur_loop_end.equals(*target) => {
            infinite_loop_starts.remove(&cur_loop_start);
        }
        C::JumpIf {
            if_true, if_false, ..
        } if cur_loop_end.equals(*if_true) || cur_loop_end.equals(*if_false) => {
            infinite_loop_starts.remove(&cur_loop_start);
        }
        C::Return { .. } | C::Abort(_) => {
            infinite_loop_starts.remove(&cur_loop_start);
        }

        C::Jump { .. }
        | C::JumpIf { .. }
        | C::Assign(_, _)
        | C::Mutate(_, _)
        | C::IgnoreAndPop { .. } => (),
        C::Break | C::Continue => panic!("ICE break/continue not translated to jumps"),
    }
}

fn post_order_traversal(
    start: Label,
    all_labels: impl IntoIterator<Item = Label>,
    successor_map: &BTreeMap<Label, BTreeSet<Label>>,
    include_dead_code: bool,
) -> (
    /* order */ Vec<Label>,
    /* back edges */ Vec<(Label, Label)>,
) {
    fn is_back_edge(cur: Label, target: Label) -> bool {
        target.0 <= cur.0
    }
    // Determine traversal order
    // build a DAG subgraph (remove the loop back edges)
    let dag: BTreeMap<Label, BTreeSet<Label>> = successor_map
        .iter()
        .map(|(node, successors)| {
            let node = *node;
            let non_loop_continue_successors = successors
                .iter()
                // remove the loop back edges
                .filter(|successor| !is_back_edge(node, **successor))
                .copied()
                .collect();
            (node, non_loop_continue_successors)
        })
        .collect();

    // build the post-order traversal
    let mut post_order = Vec::with_capacity(dag.len());
    let mut finished = BTreeSet::new();
    let mut stack = vec![(start, /* is_first_visit */ true)];
    let mut remaining = all_labels
        .into_iter()
        .map(Reverse)
        .collect::<BinaryHeap<_>>();
    while let Some((cur, is_first_visit)) = stack.pop() {
        if is_first_visit {
            stack.push((cur, false));
            stack.extend(
                dag[&cur]
                    .iter()
                    .filter(|successor| !finished.contains(*successor))
                    .map(|successor| (*successor, /* is_first_visit */ true)),
            );
        } else {
            debug_assert!(dag[&cur]
                .iter()
                .all(|successor| finished.contains(successor)));
            if finished.insert(cur) {
                post_order.push(cur)
            }
        }
        if include_dead_code {
            // if dead code needs to be visited...
            if stack.is_empty() {
                // find the minimum label that has not been visited
                let next_opt = loop {
                    match remaining.pop() {
                        Some(next) if finished.contains(&next.0) => continue,
                        next_opt => break next_opt.map(|rev| rev.0),
                    }
                };
                // add that min label to the stack and continue
                if let Some(next) = next_opt {
                    debug_assert!(!finished.contains(&next));
                    stack.push((next, true))
                }
            }
        }
    }

    // Determine loop back edges
    let mut back_edges: Vec<(Label, Label)> = vec![];
    for (node, successors) in successor_map {
        let node = *node;
        let loop_continues = successors
            .iter()
            .filter(|successor| is_back_edge(node, **successor))
            .copied();
        for successor in loop_continues {
            back_edges.push((node, successor));
        }
    }

    (post_order, back_edges)
}

//**************************************************************************************************
// Reverse Traversal Block CFG
//**************************************************************************************************

#[derive(Debug)]
pub struct ReverseBlockCFG<'a> {
    terminal: Label,
    blocks: &'a mut BasicBlocks,
    successor_map: &'a mut BTreeMap<Label, BTreeSet<Label>>,
    predecessor_map: &'a mut BTreeMap<Label, BTreeSet<Label>>,
    traversal_order: Vec<Label>,
    traversal_successors: BTreeMap<Label, Label>,
    loop_heads: BTreeMap<Label, BTreeSet<Label>>,
}

impl<'a> ReverseBlockCFG<'a> {
    pub fn new(forward_cfg: &'a mut BlockCFG, infinite_loop_starts: &BTreeSet<Label>) -> Self {
        let blocks: &'a mut BasicBlocks = forward_cfg.blocks;
        let forward_successors = &mut forward_cfg.successor_map;
        let forward_predecessor = &mut forward_cfg.predecessor_map;
        let end_blocks = {
            let mut end_blocks = BTreeSet::new();
            for (lbl, successors) in forward_successors.iter() {
                let loop_start_successors = successors
                    .iter()
                    .filter(|l| infinite_loop_starts.contains(l));
                for loop_start_successor in loop_start_successors {
                    if lbl >= loop_start_successor {
                        end_blocks.insert(*lbl);
                    }
                }
            }
            for (lbl, block) in blocks.iter() {
                let last_cmd = block.back().unwrap();
                if last_cmd.value.is_exit() {
                    end_blocks.insert(*lbl);
                }
            }
            end_blocks
        };

        // setup fake terminal block that will act as the start node in reverse traversal
        let terminal = Label(blocks.keys().map(|lbl| lbl.0).max().unwrap_or(0) + 1);
        assert!(!blocks.contains_key(&terminal), "{:#?}", blocks);
        blocks.insert(terminal, BasicBlock::new());
        for terminal_predecessor in &end_blocks {
            forward_successors
                .entry(*terminal_predecessor)
                .or_insert_with(BTreeSet::new)
                .insert(terminal);
        }
        forward_predecessor.insert(terminal, end_blocks);
        // ensure map is not partial
        forward_successors.insert(terminal, BTreeSet::new());

        let (post_order, back_edges) = post_order_traversal(
            forward_cfg.start,
            blocks.keys().copied(),
            forward_successors,
            /* include_dead_code */ false,
        );
        let successor_map = forward_predecessor;
        let predecessor_map = forward_successors;
        let traversal_order = post_order;
        let traversal_successors = traversal_order
            .windows(2)
            .map(|window| {
                debug_assert!(window.len() == 2);
                (window[0], window[1])
            })
            .collect();
        let mut loop_heads: BTreeMap<Label, BTreeSet<Label>> = BTreeMap::new();
        for (id, forward_loop_head) in back_edges {
            debug_assert!(id.0 >= forward_loop_head.0);
            loop_heads.entry(id).or_default().insert(forward_loop_head);
        }
        let res = Self {
            terminal,
            blocks,
            successor_map,
            predecessor_map,
            traversal_order,
            traversal_successors,
            loop_heads,
        };
        for l in res.blocks.keys() {
            if l != &forward_cfg.start && !res.traversal_successors.contains_key(l) {
                res.debug();
                panic!("ICE {} not in traversal", l);
            }
        }
        res
    }

    pub fn blocks(&self) -> &BasicBlocks {
        self.blocks
    }

    pub fn block(&self, label: Label) -> &BasicBlock {
        self.blocks.get(&label).unwrap()
    }
}

impl<'a> Drop for ReverseBlockCFG<'a> {
    fn drop(&mut self) {
        let empty_block = self.blocks.remove(&self.terminal);
        assert!(empty_block.unwrap().is_empty());
        let start_predecessors = self.predecessor_map.remove(&self.terminal);
        assert!(
            start_predecessors.is_some(),
            "ICE missing start node from predecessors"
        );
        let start_successors = self.successor_map.remove(&self.terminal).unwrap();
        for start_successor in start_successors {
            self.predecessor_map
                .get_mut(&start_successor)
                .unwrap()
                .remove(&self.terminal);
        }
    }
}

impl<'a> CFG for ReverseBlockCFG<'a> {
    fn successors(&self, label: Label) -> &BTreeSet<Label> {
        self.successor_map.get(&label).unwrap()
    }

    fn predecessors(&self, label: Label) -> &BTreeSet<Label> {
        self.predecessor_map.get(&label).unwrap()
    }

    fn commands<'s>(&'s self, label: Label) -> Box<dyn Iterator<Item = (usize, &'s Command)> + 's> {
        Box::new(self.block(label).iter().enumerate().rev())
    }

    fn num_blocks(&self) -> usize {
        self.blocks.len()
    }

    fn start_block(&self) -> Label {
        self.traversal_order[0]
    }

    fn next_block(&self, label: Label) -> Option<Label> {
        self.traversal_successors.get(&label).copied()
    }

    fn is_loop_head(&self, label: Label) -> bool {
        self.loop_heads.contains_key(&label)
    }

    fn is_back_edge(&self, cur: Label, next: Label) -> bool {
        self.loop_heads
            .get(&next)
            .map_or(false, |back_edge_predecessors| {
                back_edge_predecessors.contains(&cur)
            })
    }

    fn debug(&self) {
        crate::shared::ast_debug::print(self);
    }
}

//**************************************************************************************************
// Debug
//**************************************************************************************************

impl AstDebug for BlockCFG<'_> {
    fn ast_debug(&self, w: &mut AstWriter) {
        let BlockCFG {
            start,
            blocks,
            successor_map,
            predecessor_map,
            traversal_order,
            traversal_successors: _,
            loop_heads,
        } = self;
        w.writeln("--BlockCFG--");
        ast_debug_cfg(
            w,
            *start,
            blocks,
            successor_map.iter(),
            predecessor_map.iter(),
            traversal_order.windows(2).map(|w| (&w[0], &w[1])),
            loop_heads.iter(),
        );
    }
}

impl AstDebug for ReverseBlockCFG<'_> {
    fn ast_debug(&self, w: &mut AstWriter) {
        let ReverseBlockCFG {
            terminal,
            blocks,
            successor_map,
            predecessor_map,
            traversal_order,
            traversal_successors: _,
            loop_heads,
        } = self;
        w.writeln("--ReverseBlockCFG--");
        w.writeln(&format!("terminal: {}", terminal));
        ast_debug_cfg(
            w,
            traversal_order[0],
            blocks,
            successor_map.iter(),
            predecessor_map.iter(),
            traversal_order.windows(2).map(|w| (&w[0], &w[1])),
            loop_heads.iter(),
        );
    }
}

fn ast_debug_cfg<'a>(
    w: &mut AstWriter,
    start: Label,
    blocks: &BasicBlocks,
    successor_map: impl Iterator<Item = (&'a Label, &'a BTreeSet<Label>)>,
    predecessor_map: impl Iterator<Item = (&'a Label, &'a BTreeSet<Label>)>,
    traversal: impl Iterator<Item = (&'a Label, &'a Label)>,
    loop_heads: impl Iterator<Item = (&'a Label, &'a BTreeSet<Label>)>,
) {
    w.write("successor_map:");
    w.indent(4, |w| {
        for (lbl, nexts) in successor_map {
            w.write(&format!("{} => [", lbl));
            w.comma(nexts, |w, next| w.write(&format!("{}", next)));
            w.writeln("]")
        }
    });

    w.write("predecessor_map:");
    w.indent(4, |w| {
        for (lbl, nexts) in predecessor_map {
            w.write(&format!("{} <= [", lbl));
            w.comma(nexts, |w, next| w.write(&format!("{}", next)));
            w.writeln("]")
        }
    });

    w.write("traversal:");
    w.indent(4, |w| {
        for (cur, next) in traversal {
            w.writeln(&format!("{} => {}", cur, next))
        }
    });

    w.write("loop heads:");
    w.indent(4, |w| {
        for (loop_head, back_edge_predecessors) in loop_heads {
            for pred in back_edge_predecessors {
                w.writeln(&format!(
                    "loop head: {}. back edge predecessor: {}",
                    loop_head, pred
                ))
            }
        }
    });

    w.writeln(&format!("start: {}", start));
    w.writeln("blocks:");
    w.indent(4, |w| blocks.ast_debug(w));
}