1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
// Copyright (c) The Diem Core Contributors
// Copyright (c) The Move Contributors
// SPDX-License-Identifier: Apache-2.0
use super::cfg::CFG;
use crate::{diagnostics::Diagnostics, hlir::ast::*};
use std::collections::BTreeMap;
/// Trait for finite-height abstract domains. Infinite height domains would require a more complex
/// trait with widening and a partial order.
pub trait AbstractDomain: Clone + Sized {
fn join(&mut self, other: &Self) -> JoinResult;
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum JoinResult {
Unchanged,
Changed,
}
#[derive(Clone)]
enum BlockPostcondition {
/// Unprocessed block
Unprocessed,
/// Analyzing block was successful
Success,
/// Analyzing block ended in an error
Error(Diagnostics),
}
#[derive(Clone)]
struct BlockInvariant<State> {
/// Precondition of the block
pre: State,
/// Postcondition of the block---just success/error for now
post: BlockPostcondition,
}
/// A map from block id's to the pre/post of each block after a fixed point is reached.
type InvariantMap<State> = BTreeMap<Label, BlockInvariant<State>>;
fn collect_states_and_diagnostics<State>(
map: InvariantMap<State>,
) -> (BTreeMap<Label, State>, Diagnostics) {
let mut diags = Diagnostics::new();
let final_states = map
.into_iter()
.map(|(lbl, BlockInvariant { pre, post })| {
if let BlockPostcondition::Error(ds) = post {
diags.extend(ds)
}
(lbl, pre)
})
.collect();
(final_states, diags)
}
/// Take a pre-state + instruction and mutate it to produce a post-state
/// Auxiliary data can be stored in self.
pub trait TransferFunctions {
type State: AbstractDomain;
/// Execute local@instr found at index local@index in the current basic block from pre-state
/// local@pre.
/// Should return an AnalysisError if executing the instruction is unsuccessful, and () if
/// the effects of successfully executing local@instr have been reflected by mutatating
/// local@pre.
/// Auxilary data from the analysis that is not part of the abstract state can be collected by
/// mutating local@self.
/// The last instruction index in the current block is local@last_index. Knowing this
/// information allows clients to detect the end of a basic block and special-case appropriately
/// (e.g., normalizing the abstract state before a join).
fn execute(
&mut self,
pre: &mut Self::State,
lbl: Label,
idx: usize,
command: &Command,
) -> Diagnostics;
}
pub trait AbstractInterpreter: TransferFunctions {
/// Analyze procedure local@function_view starting from pre-state local@initial_state.
fn analyze_function(
&mut self,
cfg: &dyn CFG,
initial_state: Self::State,
) -> (BTreeMap<Label, Self::State>, Diagnostics) {
let mut inv_map: InvariantMap<Self::State> = InvariantMap::new();
let start = cfg.start_block();
let mut next_block = Some(start);
while let Some(block_label) = next_block {
let block_invariant = inv_map
.entry(block_label)
.or_insert_with(|| BlockInvariant {
pre: initial_state.clone(),
post: BlockPostcondition::Unprocessed,
});
let (post_state, errors) = self.execute_block(cfg, &block_invariant.pre, block_label);
block_invariant.post = if errors.is_empty() {
BlockPostcondition::Success
} else {
BlockPostcondition::Error(errors)
};
// propagate postcondition of this block to successor blocks
let mut next_block_candidate = cfg.next_block(block_label);
for next_block_id in cfg.successors(block_label) {
match inv_map.get_mut(next_block_id) {
Some(next_block_invariant) => {
let join_result = {
let old_pre = &mut next_block_invariant.pre;
old_pre.join(&post_state)
};
match join_result {
JoinResult::Unchanged => {
// Pre is the same after join. Reanalyzing this block would produce
// the same post
}
JoinResult::Changed => {
// If the cur->successor is a back edge, jump back to the beginning
// of the loop, instead of the normal next block
if cfg.is_back_edge(block_label, *next_block_id) {
next_block_candidate = Some(*next_block_id);
}
// Pre has changed, the post condition is now unknown for the block
next_block_invariant.post = BlockPostcondition::Unprocessed
}
}
}
None => {
// Haven't visited the next block yet. Use the post of the current block as
// its pre
inv_map.insert(
*next_block_id,
BlockInvariant {
pre: post_state.clone(),
post: BlockPostcondition::Success,
},
);
}
}
}
next_block = next_block_candidate;
}
collect_states_and_diagnostics(inv_map)
}
fn execute_block(
&mut self,
cfg: &dyn CFG,
pre_state: &Self::State,
block_lbl: Label,
) -> (Self::State, Diagnostics) {
let mut state = pre_state.clone();
let mut diags = Diagnostics::new();
for (idx, cmd) in cfg.commands(block_lbl) {
diags.extend(self.execute(&mut state, block_lbl, idx, cmd));
}
(state, diags)
}
}