1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
// Copyright (c) The Diem Core Contributors
// Copyright (c) The Move Contributors
// SPDX-License-Identifier: Apache-2.0

//! This module defines the control-flow graph uses for bytecode verification.
use crate::file_format::{Bytecode, CodeOffset};
use std::collections::{BTreeMap, BTreeSet};

// BTree/Hash agnostic type wrappers
type Map<K, V> = BTreeMap<K, V>;
type Set<V> = BTreeSet<V>;

pub type BlockId = CodeOffset;

/// A trait that specifies the basic requirements for a CFG
pub trait ControlFlowGraph {
    /// Start index of the block ID in the bytecode vector
    fn block_start(&self, block_id: BlockId) -> CodeOffset;

    /// End index of the block ID in the bytecode vector
    fn block_end(&self, block_id: BlockId) -> CodeOffset;

    /// Successors of the block ID in the bytecode vector
    fn successors(&self, block_id: BlockId) -> &Vec<BlockId>;

    /// Return the next block in traversal order
    fn next_block(&self, block_id: BlockId) -> Option<BlockId>;

    /// Iterator over the indexes of instructions in this block
    fn instr_indexes(&self, block_id: BlockId) -> Box<dyn Iterator<Item = CodeOffset>>;

    /// Return an iterator over the blocks of the CFG
    fn blocks(&self) -> Vec<BlockId>;

    /// Return the number of blocks (vertices) in the control flow graph
    fn num_blocks(&self) -> u16;

    /// Return the id of the entry block for this control-flow graph
    /// Note: even a CFG with no instructions has an (empty) entry block.
    fn entry_block_id(&self) -> BlockId;

    /// Checks if the block ID is a loop head
    fn is_loop_head(&self, block_id: BlockId) -> bool;

    /// Checks if the the edge from cur->next is a back edge
    /// returns false if the edge is not in the cfg
    fn is_back_edge(&self, cur: BlockId, next: BlockId) -> bool;
}

struct BasicBlock {
    exit: CodeOffset,
    successors: Vec<BlockId>,
}

/// The control flow graph that we build from the bytecode.
pub struct VMControlFlowGraph {
    /// The basic blocks
    blocks: Map<BlockId, BasicBlock>,
    /// Basic block ordering for traversal
    traversal_successors: Map<BlockId, BlockId>,
    /// Map of loop heads with all of their back edges
    loop_heads: Map<BlockId, /* back edges */ Set<BlockId>>,
}

impl BasicBlock {
    pub fn display(&self, entry: BlockId) {
        println!("+=======================+");
        println!("| Enter:  {}            |", entry);
        println!("+-----------------------+");
        println!("==> Children: {:?}", self.successors);
        println!("+-----------------------+");
        println!("| Exit:   {}            |", self.exit);
        println!("+=======================+");
    }
}

const ENTRY_BLOCK_ID: BlockId = 0;

impl VMControlFlowGraph {
    // Requires checks from the control flow verifier (control_flow.rs)
    pub fn new(code: &[Bytecode]) -> Self {
        fn is_back_edge(cur_block: BlockId, target_block: BlockId) -> bool {
            target_block <= cur_block
        }

        let code_len = code.len() as CodeOffset;
        // First go through and collect block ids, i.e., offsets that begin basic blocks.
        // Need to do this first in order to handle backwards edges.
        let mut block_ids = Set::new();
        block_ids.insert(ENTRY_BLOCK_ID);
        for pc in 0..code.len() {
            VMControlFlowGraph::record_block_ids(pc as CodeOffset, code, &mut block_ids);
        }

        // Create basic blocks
        let mut blocks = Map::new();
        let mut entry = 0;
        let mut exit_to_entry = Map::new();
        for pc in 0..code.len() {
            let co_pc = pc as CodeOffset;

            // Create a basic block
            if Self::is_end_of_block(co_pc, code, &block_ids) {
                let exit = co_pc;
                exit_to_entry.insert(exit, entry);
                let successors = Bytecode::get_successors(co_pc, code);
                let bb = BasicBlock { exit, successors };
                blocks.insert(entry, bb);
                entry = co_pc + 1;
            }
        }
        let blocks = blocks;
        assert_eq!(entry, code_len);

        // Determine traversal order
        // build a DAG subgraph (remove the loop back edges)
        let dag: Map<BlockId, Set<BlockId>> = blocks
            .iter()
            .map(|(id, block)| {
                let id = *id;
                let non_loop_continue_successors = block
                    .successors
                    .iter()
                    // remove the loop back edges
                    // this simple check for back edges relies on guarantees from the control flow
                    // verifier (control_flow.rs)
                    .filter(|successor| !is_back_edge(id, **successor))
                    .copied()
                    .collect();
                (id, non_loop_continue_successors)
            })
            .collect();
        // assert it is a dag
        debug_assert!(dag.iter().all(|(id, successors)| successors
            .iter()
            .all(|successor| !is_back_edge(*id, *successor))));

        // build the post-order traversal
        let mut post_order = Vec::with_capacity(blocks.len());
        let mut finished = Set::new();
        let mut stack = vec![(ENTRY_BLOCK_ID, /* is_first_visit */ true)];
        while let Some((cur, is_first_visit)) = stack.pop() {
            if is_first_visit {
                stack.push((cur, false));
                stack.extend(
                    dag[&cur]
                        .iter()
                        .filter(|successor| !finished.contains(*successor))
                        .map(|successor| (*successor, /* is_first_visit */ true)),
                );
            } else {
                debug_assert!(dag[&cur]
                    .iter()
                    .all(|successor| finished.contains(successor)));
                if finished.insert(cur) {
                    post_order.push(cur)
                }
            }
        }
        // traversal order is the reverse post-order
        let traversal_order = {
            post_order.reverse();
            post_order
        };
        // build a mapping from a block id to the next block id in the traversal order
        let traversal_successors = traversal_order
            .windows(2)
            .map(|window| {
                debug_assert!(window.len() == 2);
                (window[0], window[1])
            })
            .collect();

        // Gather loop head information
        let mut loop_heads: Map<BlockId, Set<BlockId>> = Map::new();
        for (id, block) in &blocks {
            for successor in &block.successors {
                // this simple check for back edges relies on guarantees from the control flow
                // verifier (control_flow.rs)
                if is_back_edge(*id, *successor) {
                    loop_heads.entry(*successor).or_default().insert(*id);
                }
            }
        }

        VMControlFlowGraph {
            blocks,
            traversal_successors,
            loop_heads,
        }
    }

    pub fn display(&self) {
        for (entry, block) in &self.blocks {
            block.display(*entry);
        }
        println!("Traversal: {:#?}", self.traversal_successors);
    }

    fn is_end_of_block(pc: CodeOffset, code: &[Bytecode], block_ids: &Set<BlockId>) -> bool {
        pc + 1 == (code.len() as CodeOffset) || block_ids.contains(&(pc + 1))
    }

    fn record_block_ids(pc: CodeOffset, code: &[Bytecode], block_ids: &mut Set<BlockId>) {
        let bytecode = &code[pc as usize];

        if let Some(offset) = bytecode.offset() {
            block_ids.insert(*offset);
        }

        if bytecode.is_branch() && pc + 1 < (code.len() as CodeOffset) {
            block_ids.insert(pc + 1);
        }
    }

    /// A utility function that implements BFS-reachability from block_id with
    /// respect to get_targets function
    fn traverse_by(&self, block_id: BlockId) -> Vec<BlockId> {
        let mut ret = Vec::new();
        // We use this index to keep track of our frontier.
        let mut index = 0;
        // Guard against cycles
        let mut seen = Set::new();

        ret.push(block_id);
        seen.insert(&block_id);

        while index < ret.len() {
            let block_id = ret[index];
            index += 1;
            let successors = self.successors(block_id);
            for block_id in successors.iter() {
                if !seen.contains(&block_id) {
                    ret.push(*block_id);
                    seen.insert(block_id);
                }
            }
        }

        ret
    }

    pub fn reachable_from(&self, block_id: BlockId) -> Vec<BlockId> {
        self.traverse_by(block_id)
    }
}

impl ControlFlowGraph for VMControlFlowGraph {
    // Note: in the following procedures, it's safe not to check bounds because:
    // - Every CFG (even one with no instructions) has a block at ENTRY_BLOCK_ID
    // - The only way to acquire new BlockId's is via block_successors()
    // - block_successors only() returns valid BlockId's
    // Note: it is still possible to get a BlockId from one CFG and use it in another CFG where it
    // is not valid. The design does not attempt to prevent this abuse of the API.

    fn block_start(&self, block_id: BlockId) -> CodeOffset {
        block_id
    }

    fn block_end(&self, block_id: BlockId) -> CodeOffset {
        self.blocks[&block_id].exit
    }

    fn successors(&self, block_id: BlockId) -> &Vec<BlockId> {
        &self.blocks[&block_id].successors
    }

    fn next_block(&self, block_id: BlockId) -> Option<CodeOffset> {
        debug_assert!(self.blocks.contains_key(&block_id));
        self.traversal_successors.get(&block_id).copied()
    }

    fn instr_indexes(&self, block_id: BlockId) -> Box<dyn Iterator<Item = CodeOffset>> {
        Box::new(self.block_start(block_id)..=self.block_end(block_id))
    }

    fn blocks(&self) -> Vec<BlockId> {
        self.blocks.keys().cloned().collect()
    }

    fn num_blocks(&self) -> u16 {
        self.blocks.len() as u16
    }

    fn entry_block_id(&self) -> BlockId {
        ENTRY_BLOCK_ID
    }

    fn is_loop_head(&self, block_id: BlockId) -> bool {
        self.loop_heads.contains_key(&block_id)
    }

    fn is_back_edge(&self, cur: BlockId, next: BlockId) -> bool {
        self.loop_heads
            .get(&next)
            .map_or(false, |back_edges| back_edges.contains(&cur))
    }
}