1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
//! Extended precision floating-point types.
//!
//! Also contains helpers to convert to and from native rust floats.
//! This representation stores the mantissa as a 64-bit unsigned integer,
//! and the exponent as a 32-bit unsigned integer, allowed ~80 bits of
//! precision (only 16 bits of the 32-bit integer are used, u32 is used
//! for performance). Since there is no storage for the sign bit,
//! this only works for positive floats.
// Lot of useful algorithms in here, and helper utilities.
// We want to make sure this code is not accidentally deleted.
#![allow(dead_code)]

use crate::util::*;
use super::convert::*;
use super::mantissa::Mantissa;
use super::rounding::*;
use super::shift::*;

// FLOAT TYPE

/// Extended precision floating-point type.
///
/// Private implementation, exposed only for testing purposes.
#[doc(hidden)]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct ExtendedFloat<M: Mantissa> {
    /// Mantissa for the extended-precision float.
    pub mant: M,
    /// Binary exponent for the extended-precision float.
    pub exp: i32,
}

impl<M: Mantissa> ExtendedFloat<M> {
    // PROPERTIES

    perftools_inline!{
    /// Get the mantissa component.
    pub fn mantissa(&self) -> M {
        self.mant
    }}

    perftools_inline!{
    /// Get the exponent component.
    pub fn exponent(&self) -> i32 {
        self.exp
    }}

    // OPERATIONS

    perftools_inline!{
    /// Multiply two normalized extended-precision floats, as if by `a*b`.
    ///
    /// The precision is maximal when the numbers are normalized, however,
    /// decent precision will occur as long as both values have high bits
    /// set. The result is not normalized.
    ///
    /// Algorithm:
    ///     1. Non-signed multiplication of mantissas (requires 2x as many bits as input).
    ///     2. Normalization of the result (not done here).
    ///     3. Addition of exponents.
    pub fn mul(&self, b: &ExtendedFloat<M>)
        -> ExtendedFloat<M>
    {
        // Logic check, values must be decently normalized prior to multiplication.
        debug_assert!((self.mant & M::HIMASK != M::ZERO) && (b.mant & M::HIMASK != M::ZERO));

        // Extract high-and-low masks.
        let ah = self.mant >> M::HALF;
        let al = self.mant & M::LOMASK;
        let bh = b.mant >> M::HALF;
        let bl = b.mant & M::LOMASK;

        // Get our products
        let ah_bl = ah * bl;
        let al_bh = al * bh;
        let al_bl = al * bl;
        let ah_bh = ah * bh;

        let mut tmp = (ah_bl & M::LOMASK) + (al_bh & M::LOMASK) + (al_bl >> M::HALF);
        // round up
        tmp += M::ONE << (M::HALF-1);

        ExtendedFloat {
            mant: ah_bh + (ah_bl >> M::HALF) + (al_bh >> M::HALF) + (tmp >> M::HALF),
            exp: self.exp + b.exp + M::FULL
        }
    }}

    perftools_inline!{
    /// Multiply in-place, as if by `a*b`.
    ///
    /// The result is not normalized.
    pub fn imul(&mut self, b: &ExtendedFloat<M>)
    {
        *self = self.mul(b);
    }}

    // NORMALIZE

    perftools_inline!{
    /// Get if extended-float is normalized, MSB is set.
    pub fn is_normalized(&self)
        -> bool
    {
        self.mant & M::NORMALIZED_MASK == M::NORMALIZED_MASK
    }}

    perftools_inline!{
    /// Normalize float-point number.
    ///
    /// Shift the mantissa so the number of leading zeros is 0, or the value
    /// itself is 0.
    ///
    /// Get the number of bytes shifted.
    pub fn normalize(&mut self)
        -> u32
    {
        // Note:
        // Using the cltz intrinsic via leading_zeros is way faster (~10x)
        // than shifting 1-bit at a time, via while loop, and also way
        // faster (~2x) than an unrolled loop that checks at 32, 16, 4,
        // 2, and 1 bit.
        //
        // Using a modulus of pow2 (which will get optimized to a bitwise
        // and with 0x3F or faster) is slightly slower than an if/then,
        // however, removing the if/then will likely optimize more branched
        // code as it removes conditional logic.

        // Calculate the number of leading zeros, and then zero-out
        // any overflowing bits, to avoid shl overflow when self.mant == 0.
        let shift = if self.mant.is_zero() { 0 } else { self.mant.leading_zeros() };
        shl(self, shift);
        shift
    }}

    perftools_inline!{
    /// Normalize floating-point number to n-bits away from the MSB.
    ///
    /// This may lead to lossy rounding, and will not use custom rounding
    /// rules to accommodate for this.
    pub fn normalize_to(&mut self, n: u32)
        -> i32
    {
        debug_assert!(n <= M::BITS.as_u32(), "ExtendedFloat::normalize_to() attempting to shift beyond type size.");

        // Get the shift, with any of the higher bits removed.
        // This way, we can guarantee that we will not overflow
        // with the shl/shr.
        let leading = if self.mant.is_zero() { n } else { self.mant.leading_zeros() };
        let shift = leading.as_i32() - n.as_i32();
        if shift > 0 {
            // Need to shift left
            shl(self, shift);
        } else if shift < 0 {
            // Need to shift right.
            shr(self, -shift);
        }

        shift
    }}

    perftools_inline!{
    /// Get normalized boundaries for float.
    pub fn normalized_boundaries(&self)
        -> (ExtendedFloat<M>, ExtendedFloat<M>)
    {
        let mut upper = ExtendedFloat {
            mant: (self.mant << 1) + M::ONE,
            exp: self.exp - 1,
        };
        upper.normalize();

        // Use a boolean hack to get 2 if they're equal, else 1, without
        // any branching.
        let is_hidden = self.mant == as_cast::<M, _>(f64::HIDDEN_BIT_MASK);
        let l_shift: i32 = is_hidden as i32 + 1;

        let mut lower = ExtendedFloat {
            mant: (self.mant << l_shift) - M::ONE,
            exp: self.exp - l_shift,
        };
        lower.mant <<= lower.exp - upper.exp;
        lower.exp = upper.exp;

        (lower, upper)
    }}

    // ROUND

    perftools_inline!{
    /// Lossy round float-point number to native mantissa boundaries.
    pub(crate) fn round_to_native<F, Cb>(&mut self, cb: Cb)
        where F: FloatRounding<M>,
              Cb: FnOnce(&mut ExtendedFloat<M>, i32)
    {
        round_to_native::<F, M, _>(self, cb)
    }}

    perftools_inline!{
    /// Lossy round float-point number to f32 mantissa boundaries.
    pub(crate) fn round_to_f32<Cb>(&mut self, cb: Cb)
        where f32: FloatRounding<M>,
              Cb: FnOnce(&mut ExtendedFloat<M>, i32)
    {
        self.round_to_native::<f32, Cb>(cb)
    }}

    perftools_inline!{
    /// Lossy round float-point number to f64 mantissa boundaries.
    pub(crate) fn round_to_f64<Cb>(&mut self, cb: Cb)
        where f64: FloatRounding<M>,
              Cb: FnOnce(&mut ExtendedFloat<M>, i32)
    {
        self.round_to_native::<f64, Cb>(cb)
    }}

    // FROM

    perftools_inline!{
    /// Create extended float from 8-bit unsigned integer.
    pub fn from_int<T: Integer>(i: T)
        -> ExtendedFloat<M>
    {
        from_int(i)
    }}

    perftools_inline!{
    /// Create extended float from 8-bit unsigned integer.
    pub fn from_u8(i: u8)
        -> ExtendedFloat<M>
    {
        Self::from_int(i)
    }}

    perftools_inline!{
    /// Create extended float from 16-bit unsigned integer.
    pub fn from_u16(i: u16)
        -> ExtendedFloat<M>
    {
        Self::from_int(i)
    }}

    perftools_inline!{
    /// Create extended float from 32-bit unsigned integer.
    pub fn from_u32(i: u32)
        -> ExtendedFloat<M>
    {
        Self::from_int(i)
    }}

    perftools_inline!{
    /// Create extended float from 64-bit unsigned integer.
    pub fn from_u64(i: u64)
        -> ExtendedFloat<M>
    {
        Self::from_int(i)
    }}

    perftools_inline!{
    /// Create extended float from native float.
    pub fn from_float<F: Float>(f: F)
        -> ExtendedFloat<M>
    {
        from_float(f)
    }}

    perftools_inline!{
    /// Create extended float from 32-bit float.
    pub fn from_f32(f: f32)
        -> ExtendedFloat<M>
    {
        Self::from_float(f)
    }}

    perftools_inline!{
    /// Create extended float from 64-bit float.
    pub fn from_f64(f: f64)
        -> ExtendedFloat<M>
    {
        Self::from_float(f)
    }}

    // INTO

    perftools_inline!{
    /// Convert into lower-precision native float.
    pub fn into_float<F: FloatRounding<M>>(self)
        -> F
    {
        #[cfg(not(feature = "rounding"))] {
            self.into_rounded_float::<F>(RoundingKind::NearestTieEven, Sign::Positive)
        }

        #[cfg(feature = "rounding")] {
            self.into_rounded_float::<F>(get_float_rounding(), Sign::Positive)
        }
    }}

    perftools_inline!{
    /// Convert into lower-precision 32-bit float.
    pub fn into_f32(self)
        -> f32
        where f32: FloatRounding<M>
    {
        self.into_float()
    }}

    perftools_inline!{
    /// Convert into lower-precision 64-bit float.
    pub fn into_f64(self)
        -> f64
        where f64: FloatRounding<M>
    {
        self.into_float()
    }}

    // INTO ROUNDED

    perftools_inline!{
    /// Into rounded float where the rounding kind has been converted.
    pub(crate) fn into_rounded_float_impl<F>(mut self, kind: RoundingKind)
        -> F
        where F: FloatRounding<M>
    {
        // Normalize the actual float rounding here.
        let cb = match kind {
            RoundingKind::NearestTieEven     => round_nearest_tie_even,
            RoundingKind::NearestTieAwayZero => round_nearest_tie_away_zero,
            RoundingKind::Upward             => round_upward,
            RoundingKind::Downward           => round_downward,
            _                                => unreachable!()
        };

        self.round_to_native::<F, _>(cb);
        into_float(self)
    }}

    perftools_inline!{
    /// Convert into lower-precision native float with custom rounding rules.
    pub fn into_rounded_float<F>(self, kind: RoundingKind, sign: Sign)
        -> F
        where F: FloatRounding<M>
    {
        self.into_rounded_float_impl(internal_rounding(kind, sign))
    }}

    perftools_inline!{
    /// Convert into lower-precision 32-bit float with custom rounding rules.
    pub fn into_rounded_f32(self, kind: RoundingKind, sign: Sign)
        -> f32
        where f32: FloatRounding<M>
    {
        self.into_rounded_float(kind, sign)
    }}

    perftools_inline!{
    /// Convert into lower-precision 64-bit float with custom rounding rules.
    pub fn into_rounded_f64(self, kind: RoundingKind, sign: Sign)
        -> f64
        where f64: FloatRounding<M>
    {
        self.into_rounded_float(kind, sign)
    }}

    // AS

    perftools_inline!{
    /// Convert to lower-precision native float.
    pub fn as_float<F: FloatRounding<M>>(&self)
        -> F
    {
        self.clone().into_float::<F>()
    }}

    perftools_inline!{
    /// Convert to lower-precision 32-bit float.
    pub fn as_f32(&self)
        -> f32
        where f32: FloatRounding<M>
    {
        self.as_float()
    }}

    perftools_inline!{
    /// Convert to lower-precision 64-bit float.
    pub fn as_f64(&self)
        -> f64
        where f64: FloatRounding<M>
    {
        self.as_float()
    }}

    // AS ROUNDED

    perftools_inline!{
    /// Convert to lower-precision native float with custom rounding rules.
    pub fn as_rounded_float<F>(&self, kind: RoundingKind, sign: Sign)
        -> F
        where F: FloatRounding<M>
    {
        self.clone().into_rounded_float::<F>(kind, sign)
    }}

    perftools_inline!{
    /// Convert to lower-precision 32-bit float with custom rounding rules.
    pub fn as_rounded_f32(&self, kind: RoundingKind, sign: Sign)
        -> f32
        where f32: FloatRounding<M>
    {
        self.as_rounded_float(kind, sign)
    }}

    perftools_inline!{
    /// Convert to lower-precision 64-bit float with custom rounding rules.
    pub fn as_rounded_f64(&self, kind: RoundingKind, sign: Sign)
        -> f64
        where f64: FloatRounding<M>
    {
        self.as_rounded_float(kind, sign)
    }}
}

impl ExtendedFloat<u128> {
    perftools_inline!{
    /// Create extended float from 64-bit unsigned integer.
    pub fn from_u128(i: u128) -> ExtendedFloat<u128> {
        Self::from_int(i)
    }}
}

// ALIASES

/// Alias with ~80 bits of precision, 64 for the mantissa and 16 for exponent.
pub type ExtendedFloat80 = ExtendedFloat<u64>;

/// Alias with ~160 bits of precision, 128 for the mantissa and 32 for exponent.
pub type ExtendedFloat160 = ExtendedFloat<u128>;

// TESTS
// -----

#[cfg(test)]
mod tests {
    use super::*;

    use approx::assert_relative_eq;

    // NORMALIZE

    fn check_normalize(mant: u64, exp: i32, shift: u32, r_mant: u64, r_exp: i32) {
        let mut x = ExtendedFloat {mant: mant, exp: exp};
        assert!(!x.is_normalized());
        assert_eq!(x.normalize(), shift);
        assert_eq!(x, ExtendedFloat {mant: r_mant, exp: r_exp});
        assert!(x.is_normalized() || x.mant.is_zero());

        let mut x = ExtendedFloat {mant: mant as u128, exp: exp};
        let shift = if shift == 0 { 0 } else { shift+64 };
        let r_exp = if r_exp == 0 { 0 } else { r_exp-64 };
        assert!(!x.is_normalized());
        assert_eq!(x.normalize(), shift);
        assert_eq!(x, ExtendedFloat {mant: (r_mant as u128) << 64, exp: r_exp});
        assert!(x.is_normalized() || x.mant.is_zero());
    }

    #[test]
    fn normalize_test() {
        // F32
        // 0
        check_normalize(0, 0, 0, 0, 0);

        // min value
        check_normalize(1, -149, 63, 9223372036854775808, -212);

        // 1.0e-40
        check_normalize(71362, -149, 47, 10043308644012916736, -196);

        // 1.0e-20
        check_normalize(12379400, -90, 40, 13611294244890214400, -130);

        // 1.0
        check_normalize(8388608, -23, 40, 9223372036854775808, -63);

        // 1e20
        check_normalize(11368684, 43, 40, 12500000250510966784, 3);

        // max value
        check_normalize(16777213, 104, 40, 18446740775174668288, 64);

        // F64

        // min value
        check_normalize(1, -1074, 63, 9223372036854775808, -1137);

        // 1.0e-250
        check_normalize(6448907850777164, -883, 11, 13207363278391631872, -894);

        // 1.0e-150
        check_normalize(7371020360979573, -551, 11, 15095849699286165504, -562);

        // 1.0e-45
        check_normalize(6427752177035961, -202, 11, 13164036458569648128, -213);

        // 1.0e-40
        check_normalize(4903985730770844, -185, 11, 10043362776618688512, -196);

        // 1.0e-20
        check_normalize(6646139978924579, -119, 11, 13611294676837537792, -130);

        // 1.0
        check_normalize(4503599627370496, -52, 11, 9223372036854775808, -63);

        // 1e20
        check_normalize(6103515625000000, 14, 11, 12500000000000000000, 3);

        // 1e40
        check_normalize(8271806125530277, 80, 11, 16940658945086007296, 69);

        // 1e150
        check_normalize(5503284107318959, 446, 11, 11270725851789228032, 435);

        // 1e250
        check_normalize(6290184345309700, 778, 11, 12882297539194265600, 767);

        // max value
        check_normalize(9007199254740991, 971, 11, 18446744073709549568, 960);
    }

    fn check_normalize_to(mant: u64, exp: i32, n: u32, shift: i32, r_mant: u64, r_exp: i32) {
        let mut x = ExtendedFloat {mant: mant, exp: exp};
        assert_eq!(x.normalize_to(n), shift);
        assert_eq!(x, ExtendedFloat {mant: r_mant, exp: r_exp});

        let mut x = ExtendedFloat {mant: mant as u128, exp: exp};
        let shift = if shift == 0 { 0 } else { shift+64 };
        let r_exp = if r_exp == 0 { 0 } else { r_exp-64 };
        assert_eq!(x.normalize_to(n), shift);
        assert_eq!(x, ExtendedFloat {mant: (r_mant as u128) << 64, exp: r_exp});
    }

    #[test]
    fn normalize_to_test() {
        // F32
        // 0
        check_normalize_to(0, 0, 0, 0, 0, 0);
        check_normalize_to(0, 0, 2, 0, 0, 0);

        // min value
        check_normalize_to(1, -149, 0, 63, 9223372036854775808, -212);
        check_normalize_to(1, -149, 2, 61, 2305843009213693952, -210);

        // 1.0e-40
        check_normalize_to(71362, -149, 0, 47, 10043308644012916736, -196);
        check_normalize_to(71362, -149, 2, 45, 2510827161003229184, -194);

        // 1.0e-20
        check_normalize_to(12379400, -90, 0, 40, 13611294244890214400, -130);
        check_normalize_to(12379400, -90, 2, 38, 3402823561222553600, -128);

        // 1.0
        check_normalize_to(8388608, -23, 0, 40, 9223372036854775808, -63);
        check_normalize_to(8388608, -23, 2, 38, 2305843009213693952, -61);

        // 1e20
        check_normalize_to(11368684, 43, 0, 40, 12500000250510966784, 3);
        check_normalize_to(11368684, 43, 2, 38, 3125000062627741696, 5);

        // max value
        check_normalize_to(16777213, 104, 0, 40, 18446740775174668288, 64);
        check_normalize_to(16777213, 104, 2, 38, 4611685193793667072, 66);

        // F64

        // min value
        check_normalize_to(1, -1074, 0, 63, 9223372036854775808, -1137);
        check_normalize_to(1, -1074, 2, 61, 2305843009213693952, -1135);

        // 1.0e-250
        check_normalize_to(6448907850777164, -883, 0, 11, 13207363278391631872, -894);
        check_normalize_to(6448907850777164, -883, 2, 9, 3301840819597907968, -892);

        // 1.0e-150
        check_normalize_to(7371020360979573, -551, 0, 11, 15095849699286165504, -562);
        check_normalize_to(7371020360979573, -551, 2, 9, 3773962424821541376, -560);

        // 1.0e-45
        check_normalize_to(6427752177035961, -202, 0, 11, 13164036458569648128, -213);
        check_normalize_to(6427752177035961, -202, 2, 9, 3291009114642412032, -211);

        // 1.0e-40
        check_normalize_to(4903985730770844, -185, 0, 11, 10043362776618688512, -196);
        check_normalize_to(4903985730770844, -185, 2, 9, 2510840694154672128, -194);

        // 1.0e-20
        check_normalize_to(6646139978924579, -119, 0, 11, 13611294676837537792, -130);
        check_normalize_to(6646139978924579, -119, 2, 9, 3402823669209384448, -128);

        // 1.0
        check_normalize_to(4503599627370496, -52, 0, 11, 9223372036854775808, -63);
        check_normalize_to(4503599627370496, -52, 2, 9, 2305843009213693952, -61);

        // 1e20
        check_normalize_to(6103515625000000, 14, 0 ,11, 12500000000000000000, 3);
        check_normalize_to(6103515625000000, 14, 2, 9, 3125000000000000000, 5);

        // 1e40
        check_normalize_to(8271806125530277, 80, 0, 11, 16940658945086007296, 69);
        check_normalize_to(8271806125530277, 80, 2, 9, 4235164736271501824, 71);

        // 1e150
        check_normalize_to(5503284107318959, 446, 0, 11, 11270725851789228032, 435);
        check_normalize_to(5503284107318959, 446, 2, 9, 2817681462947307008, 437);

        // 1e250
        check_normalize_to(6290184345309700, 778, 0, 11, 12882297539194265600, 767);
        check_normalize_to(6290184345309700, 778, 2, 9, 3220574384798566400, 769);

        // max value
        check_normalize_to(9007199254740991, 971, 0, 11, 18446744073709549568, 960);
        check_normalize_to(9007199254740991, 971, 2, 9, 4611686018427387392, 962);
    }

    #[test]
    fn normalized_boundaries_test() {
        let fp = ExtendedFloat80 {mant: 4503599627370496, exp: -50};
        let u = ExtendedFloat80 {mant: 9223372036854775296, exp: -61};
        let l = ExtendedFloat80 {mant: 9223372036854776832, exp: -61};
        let (upper, lower) = fp.normalized_boundaries();
        assert_eq!(upper, u);
        assert_eq!(lower, l);
    }

    // ROUND

    fn check_round_to_f32(mant: u64, exp: i32, r_mant: u64, r_exp: i32)
    {
        let mut x = ExtendedFloat {mant: mant, exp: exp};
        x.round_to_f32(round_nearest_tie_even);
        assert_eq!(x, ExtendedFloat {mant: r_mant, exp: r_exp});

        let mut x = ExtendedFloat {mant: (mant as u128) << 64, exp: exp-64};
        x.round_to_f32(round_nearest_tie_even);
        assert_eq!(x, ExtendedFloat {mant: r_mant as u128, exp: r_exp});
    }

    #[test]
    fn round_to_f32_test() {
        // This is lossy, so some of these values are **slightly** rounded.

        // underflow
        check_round_to_f32(9223372036854775808, -213, 0, -149);

        // min value
        check_round_to_f32(9223372036854775808, -212, 1, -149);

        // 1.0e-40
        check_round_to_f32(10043308644012916736, -196, 71362, -149);

        // 1.0e-20
        check_round_to_f32(13611294244890214400, -130, 12379400, -90);

        // 1.0
        check_round_to_f32(9223372036854775808, -63, 8388608, -23);

        // 1e20
        check_round_to_f32(12500000250510966784, 3, 11368684, 43);

        // max value
        check_round_to_f32(18446740775174668288, 64, 16777213, 104);

        // overflow
        check_round_to_f32(18446740775174668288, 65, 16777213, 105);
    }

    fn check_round_to_f64(mant: u64, exp: i32, r_mant: u64, r_exp: i32)
    {
        let mut x = ExtendedFloat {mant: mant, exp: exp};
        x.round_to_f64(round_nearest_tie_even);
        assert_eq!(x, ExtendedFloat {mant: r_mant, exp: r_exp});

        let mut x = ExtendedFloat {mant: (mant as u128) << 64, exp: exp-64};
        x.round_to_f64(round_nearest_tie_even);
        assert_eq!(x, ExtendedFloat {mant: r_mant as u128, exp: r_exp});
    }

    #[test]
    fn round_to_f64_test() {
        // This is lossy, so some of these values are **slightly** rounded.

        // underflow
        check_round_to_f64(9223372036854775808, -1138, 0, -1074);

        // min value
        check_round_to_f64(9223372036854775808, -1137, 1, -1074);

        // 1.0e-250
        check_round_to_f64(15095849699286165504, -562, 7371020360979573, -551);

        // 1.0e-150
        check_round_to_f64(15095849699286165504, -562, 7371020360979573, -551);

        // 1.0e-45
        check_round_to_f64(13164036458569648128, -213, 6427752177035961, -202);

        // 1.0e-40
        check_round_to_f64(10043362776618688512, -196, 4903985730770844, -185);

        // 1.0e-20
        check_round_to_f64(13611294676837537792, -130, 6646139978924579, -119);

        // 1.0
        check_round_to_f64(9223372036854775808, -63, 4503599627370496, -52);

        // 1e20
        check_round_to_f64(12500000000000000000, 3, 6103515625000000, 14);

        // 1e40
        check_round_to_f64(16940658945086007296, 69, 8271806125530277, 80);

        // 1e150
        check_round_to_f64(11270725851789228032, 435, 5503284107318959, 446);

        // 1e250
        check_round_to_f64(12882297539194265600, 767, 6290184345309700, 778);

        // max value
        check_round_to_f64(18446744073709549568, 960, 9007199254740991, 971);

        // Bug fixes
        // 1.2345e-308
        check_round_to_f64(10234494226754558294, -1086, 2498655817078750, -1074)
    }

    // FROM

    #[test]
    fn from_int_test() {
        // 0
        assert_eq!(ExtendedFloat80::from_u8(0), (0, 0).into());
        assert_eq!(ExtendedFloat80::from_u16(0), (0, 0).into());
        assert_eq!(ExtendedFloat80::from_u32(0), (0, 0).into());
        assert_eq!(ExtendedFloat80::from_u64(0), (0, 0).into());
        assert_eq!(ExtendedFloat160::from_u128(0), (0, 0).into());

        // 1
        assert_eq!(ExtendedFloat80::from_u8(1), (1, 0).into());
        assert_eq!(ExtendedFloat80::from_u16(1), (1, 0).into());
        assert_eq!(ExtendedFloat80::from_u32(1), (1, 0).into());
        assert_eq!(ExtendedFloat80::from_u64(1), (1, 0).into());
        assert_eq!(ExtendedFloat160::from_u128(1), (1, 0).into());

        // (2^8-1) 255
        assert_eq!(ExtendedFloat80::from_u8(255), (255, 0).into());
        assert_eq!(ExtendedFloat80::from_u16(255), (255, 0).into());
        assert_eq!(ExtendedFloat80::from_u32(255), (255, 0).into());
        assert_eq!(ExtendedFloat80::from_u64(255), (255, 0).into());
        assert_eq!(ExtendedFloat160::from_u128(255), (255, 0).into());

        // (2^16-1) 65535
        assert_eq!(ExtendedFloat80::from_u16(65535), (65535, 0).into());
        assert_eq!(ExtendedFloat80::from_u32(65535), (65535, 0).into());
        assert_eq!(ExtendedFloat80::from_u64(65535), (65535, 0).into());
        assert_eq!(ExtendedFloat160::from_u128(65535), (65535, 0).into());

        // (2^32-1) 4294967295
        assert_eq!(ExtendedFloat80::from_u32(4294967295), (4294967295, 0).into());
        assert_eq!(ExtendedFloat80::from_u64(4294967295), (4294967295, 0).into());
        assert_eq!(ExtendedFloat160::from_u128(4294967295), (4294967295, 0).into());

        // (2^64-1) 18446744073709551615
        assert_eq!(ExtendedFloat80::from_u64(18446744073709551615), (18446744073709551615, 0).into());
        assert_eq!(ExtendedFloat160::from_u128(18446744073709551615), (18446744073709551615, 0).into());

        // (2^128-1) 340282366920938463463374607431768211455
        assert_eq!(ExtendedFloat160::from_u128(340282366920938463463374607431768211455), (340282366920938463463374607431768211455, 0).into());
    }

    #[test]
    fn from_f32_test() {
        assert_eq!(ExtendedFloat80::from_f32(0.), (0, -149).into());
        assert_eq!(ExtendedFloat80::from_f32(-0.), (0, -149).into());

        assert_eq!(ExtendedFloat80::from_f32(1e-45), (1, -149).into());
        assert_eq!(ExtendedFloat80::from_f32(1e-40), (71362, -149).into());
        assert_eq!(ExtendedFloat80::from_f32(2e-40), (142725, -149).into());
        assert_eq!(ExtendedFloat80::from_f32(1e-20), (12379400, -90).into());
        assert_eq!(ExtendedFloat80::from_f32(2e-20), (12379400, -89).into());
        assert_eq!(ExtendedFloat80::from_f32(1.0), (8388608, -23).into());
        assert_eq!(ExtendedFloat80::from_f32(2.0), (8388608, -22).into());
        assert_eq!(ExtendedFloat80::from_f32(1e20), (11368684, 43).into());
        assert_eq!(ExtendedFloat80::from_f32(2e20), (11368684, 44).into());
        assert_eq!(ExtendedFloat80::from_f32(3.402823e38), (16777213, 104).into());
    }

    #[test]
    fn from_f64_test() {
        assert_eq!(ExtendedFloat80::from_f64(0.), (0, -1074).into());
        assert_eq!(ExtendedFloat80::from_f64(-0.), (0, -1074).into());
        assert_eq!(ExtendedFloat80::from_f64(5e-324), (1, -1074).into());
        assert_eq!(ExtendedFloat80::from_f64(1e-250), (6448907850777164, -883).into());
        assert_eq!(ExtendedFloat80::from_f64(1e-150), (7371020360979573, -551).into());
        assert_eq!(ExtendedFloat80::from_f64(1e-45), (6427752177035961, -202).into());
        assert_eq!(ExtendedFloat80::from_f64(1e-40), (4903985730770844, -185).into());
        assert_eq!(ExtendedFloat80::from_f64(2e-40), (4903985730770844, -184).into());
        assert_eq!(ExtendedFloat80::from_f64(1e-20), (6646139978924579, -119).into());
        assert_eq!(ExtendedFloat80::from_f64(2e-20), (6646139978924579, -118).into());
        assert_eq!(ExtendedFloat80::from_f64(1.0), (4503599627370496, -52).into());
        assert_eq!(ExtendedFloat80::from_f64(2.0), (4503599627370496, -51).into());
        assert_eq!(ExtendedFloat80::from_f64(1e20), (6103515625000000, 14).into());
        assert_eq!(ExtendedFloat80::from_f64(2e20), (6103515625000000, 15).into());
        assert_eq!(ExtendedFloat80::from_f64(1e40), (8271806125530277, 80).into());
        assert_eq!(ExtendedFloat80::from_f64(2e40), (8271806125530277, 81).into());
        assert_eq!(ExtendedFloat80::from_f64(1e150), (5503284107318959, 446).into());
        assert_eq!(ExtendedFloat80::from_f64(1e250), (6290184345309700, 778).into());
        assert_eq!(ExtendedFloat80::from_f64(1.7976931348623157e308), (9007199254740991, 971).into());
    }

    fn assert_normalized_eq<M: Mantissa>(mut x: ExtendedFloat<M>, mut y: ExtendedFloat<M>) {
        x.normalize();
        y.normalize();
        assert_eq!(x, y);
    }

    #[test]
    fn from_float() {
        let values: [f32; 26] = [
            1e-40,
            2e-40,
            1e-35,
            2e-35,
            1e-30,
            2e-30,
            1e-25,
            2e-25,
            1e-20,
            2e-20,
            1e-15,
            2e-15,
            1e-10,
            2e-10,
            1e-5,
            2e-5,
            1.0,
            2.0,
            1e5,
            2e5,
            1e10,
            2e10,
            1e15,
            2e15,
            1e20,
            2e20,
        ];
        for value in values.iter() {
            assert_normalized_eq(ExtendedFloat80::from_f32(*value), ExtendedFloat80::from_f64(*value as f64));
            assert_normalized_eq(ExtendedFloat160::from_f32(*value), ExtendedFloat160::from_f64(*value as f64));
        }
    }

    // TO

    // Sample of interesting numbers to check during standard test builds.
    const INTEGERS: [u64; 32] = [
        0,                      // 0x0
        1,                      // 0x1
        7,                      // 0x7
        15,                     // 0xF
        112,                    // 0x70
        119,                    // 0x77
        127,                    // 0x7F
        240,                    // 0xF0
        247,                    // 0xF7
        255,                    // 0xFF
        2032,                   // 0x7F0
        2039,                   // 0x7F7
        2047,                   // 0x7FF
        4080,                   // 0xFF0
        4087,                   // 0xFF7
        4095,                   // 0xFFF
        65520,                  // 0xFFF0
        65527,                  // 0xFFF7
        65535,                  // 0xFFFF
        1048560,                // 0xFFFF0
        1048567,                // 0xFFFF7
        1048575,                // 0xFFFFF
        16777200,               // 0xFFFFF0
        16777207,               // 0xFFFFF7
        16777215,               // 0xFFFFFF
        268435440,              // 0xFFFFFF0
        268435447,              // 0xFFFFFF7
        268435455,              // 0xFFFFFFF
        4294967280,             // 0xFFFFFFF0
        4294967287,             // 0xFFFFFFF7
        4294967295,             // 0xFFFFFFFF
        18446744073709551615,   // 0xFFFFFFFFFFFFFFFF
    ];

    #[test]
    fn to_f32_test() {
        // underflow
        let x = ExtendedFloat80 {mant: 9223372036854775808, exp: -213};
        assert_eq!(x.into_f32(), 0.0);

        // min value
        let x = ExtendedFloat80 {mant: 9223372036854775808, exp: -212};
        assert_eq!(x.into_f32(), 1e-45);

        // 1.0e-40
        let x = ExtendedFloat80 {mant: 10043308644012916736, exp: -196};
        assert_eq!(x.into_f32(), 1e-40);

        // 1.0e-20
        let x = ExtendedFloat80 {mant: 13611294244890214400, exp: -130};
        assert_eq!(x.into_f32(), 1e-20);

        // 1.0
        let x = ExtendedFloat80 {mant: 9223372036854775808, exp: -63};
        assert_eq!(x.into_f32(), 1.0);

        // 1e20
        let x = ExtendedFloat80 {mant: 12500000250510966784, exp: 3};
        assert_eq!(x.into_f32(), 1e20);

        // max value
        let x = ExtendedFloat80 {mant: 18446740775174668288, exp: 64};
        assert_eq!(x.into_f32(), 3.402823e38);

        // almost max, high exp
        let x = ExtendedFloat80 {mant: 1048575, exp: 108};
        assert_eq!(x.into_f32(), 3.4028204e38);

        // max value + 1
        let x = ExtendedFloat80 {mant: 16777216, exp: 104};
        assert_eq!(x.into_f32(), f32::INFINITY);

        // max value + 1
        let x = ExtendedFloat80 {mant: 1048576, exp: 108};
        assert_eq!(x.into_f32(), f32::INFINITY);

        // 1e40
        let x = ExtendedFloat80 {mant: 16940658945086007296, exp: 69};
        assert_eq!(x.into_f32(), f32::INFINITY);

        // Integers.
        for int in INTEGERS.iter() {
            let fp = ExtendedFloat80 {mant: *int, exp: 0};
            assert_eq!(fp.into_f32(), *int as f32, "{:?} as f32", *int);
        }
    }

    #[test]
    fn to_f64_test() {
        // underflow
        let x = ExtendedFloat80 {mant: 9223372036854775808, exp: -1138};
        assert_relative_eq!(x.into_f64(), 0.0);

        // min value
        let x = ExtendedFloat80 {mant: 9223372036854775808, exp: -1137};
        assert_relative_eq!(x.into_f64(), 5e-324);

        // 1.0e-250
        let x = ExtendedFloat80 {mant: 13207363278391631872, exp: -894};
        assert_relative_eq!(x.into_f64(), 1e-250);

        // 1.0e-150
        let x = ExtendedFloat80 {mant: 15095849699286165504, exp: -562};
        assert_relative_eq!(x.into_f64(), 1e-150);

        // 1.0e-45
        let x = ExtendedFloat80 {mant: 13164036458569648128, exp: -213};
        assert_relative_eq!(x.into_f64(), 1e-45);

        // 1.0e-40
        let x = ExtendedFloat80 {mant: 10043362776618688512, exp: -196};
        assert_relative_eq!(x.into_f64(), 1e-40);

        // 1.0e-20
        let x = ExtendedFloat80 {mant: 13611294676837537792, exp: -130};
        assert_relative_eq!(x.into_f64(), 1e-20);

        // 1.0
        let x = ExtendedFloat80 {mant: 9223372036854775808, exp: -63};
        assert_relative_eq!(x.into_f64(), 1.0);

        // 1e20
        let x = ExtendedFloat80 {mant: 12500000000000000000, exp: 3};
        assert_relative_eq!(x.into_f64(), 1e20);

        // 1e40
        let x = ExtendedFloat80 {mant: 16940658945086007296, exp: 69};
        assert_relative_eq!(x.into_f64(), 1e40);

        // 1e150
        let x = ExtendedFloat80 {mant: 11270725851789228032, exp: 435};
        assert_relative_eq!(x.into_f64(), 1e150);

        // 1e250
        let x = ExtendedFloat80 {mant: 12882297539194265600, exp: 767};
        assert_relative_eq!(x.into_f64(), 1e250);

        // max value
        let x = ExtendedFloat80 {mant: 9007199254740991, exp: 971};
        assert_relative_eq!(x.into_f64(), 1.7976931348623157e308);

        // max value
        let x = ExtendedFloat80 {mant: 18446744073709549568, exp: 960};
        assert_relative_eq!(x.into_f64(), 1.7976931348623157e308);

        // overflow
        let x = ExtendedFloat80 {mant: 9007199254740992, exp: 971};
        assert_relative_eq!(x.into_f64(), f64::INFINITY);

        // overflow
        let x = ExtendedFloat80 {mant: 18446744073709549568, exp: 961};
        assert_relative_eq!(x.into_f64(), f64::INFINITY);

        // Underflow
        // Adapted from failures in strtod.
        let x = ExtendedFloat80 { exp: -1139, mant: 18446744073709550712 };
        assert_relative_eq!(x.into_f64(), 0.0);

        let x = ExtendedFloat80 { exp: -1139, mant: 18446744073709551460 };
        assert_relative_eq!(x.into_f64(), 0.0);

        let x = ExtendedFloat80 { exp: -1138, mant: 9223372036854776103 };
        assert_relative_eq!(x.into_f64(), 5e-324);

        // Integers.
        for int in INTEGERS.iter() {
            let fp = ExtendedFloat80 {mant: *int, exp: 0};
            assert_eq!(fp.into_f64(), *int as f64, "{:?} as f64", *int);
        }
    }

    #[test]
    fn to_rounded_f32_test() {
        // Just check it compiles, we already check the underlying algorithms.
        let x = ExtendedFloat80 {mant: 9223372036854775808, exp: -63};
        assert_eq!(x.as_rounded_f32(RoundingKind::NearestTieEven, Sign::Positive), 1.0);
        assert_eq!(x.as_rounded_f32(RoundingKind::NearestTieAwayZero, Sign::Positive), 1.0);
        assert_eq!(x.as_rounded_f32(RoundingKind::TowardPositiveInfinity, Sign::Positive), 1.0);
        assert_eq!(x.as_rounded_f32(RoundingKind::TowardNegativeInfinity, Sign::Positive), 1.0);
        assert_eq!(x.as_rounded_f32(RoundingKind::TowardZero, Sign::Positive), 1.0);
    }

    #[test]
    fn to_rounded_f64_test() {
        // Just check it compiles, we already check the underlying algorithms.
        let x = ExtendedFloat80 {mant: 9223372036854775808, exp: -63};
        assert_eq!(x.as_rounded_f64(RoundingKind::NearestTieEven, Sign::Positive), 1.0);
        assert_eq!(x.as_rounded_f64(RoundingKind::NearestTieAwayZero, Sign::Positive), 1.0);
        assert_eq!(x.as_rounded_f64(RoundingKind::TowardPositiveInfinity, Sign::Positive), 1.0);
        assert_eq!(x.as_rounded_f64(RoundingKind::TowardNegativeInfinity, Sign::Positive), 1.0);
        assert_eq!(x.as_rounded_f64(RoundingKind::TowardZero, Sign::Positive), 1.0);
    }

    #[test]
    #[ignore]
    fn to_f32_full_test() {
        // Use exhaustive search to ensure both lossy and unlossy items are checked.
        // 23-bits of precision, so go from 0-32.
        for int in 0..u32::max_value() {
            let fp = ExtendedFloat80 {mant: int as u64, exp: 0};
            assert_eq!(fp.into_f32(), int as f32, "ExtendedFloat80 {:?} as f32", int);

            let fp = ExtendedFloat160 {mant: int as u128, exp: 0};
            assert_eq!(fp.into_f32(), int as f32, "ExtendedFloat160 {:?} as f64", int);
        }
    }

    #[test]
    #[ignore]
    fn to_f64_full_test() {
        // Use exhaustive search to ensure both lossy and unlossy items are checked.
        const U32_MAX: u64 = u32::max_value() as u64;
        const POW2_52: u64 = 4503599627370496;
        const START: u64 = POW2_52 - U32_MAX / 2;
        const END: u64 = START + U32_MAX;
        for int in START..END {
            let fp = ExtendedFloat80 {mant: int, exp: 0};
            assert_eq!(fp.into_f64(), int as f64, "ExtendedFloat80 {:?} as f64", int);

            let fp = ExtendedFloat160 {mant: int as u128, exp: 0};
            assert_eq!(fp.into_f64(), int as f64, "ExtendedFloat160 {:?} as f64", int);
        }
    }

    // OPERATIONS

    fn check_mul<M: Mantissa>(a: ExtendedFloat<M>, b: ExtendedFloat<M>, c: ExtendedFloat<M>) {
        let r = a.mul(&b);
        assert_eq!(r, c);
    }

    #[test]
    fn mul_test() {
        // Normalized (64-bit mantissa)
        let a = ExtendedFloat80 {mant: 13164036458569648128, exp: -213};
        let b = ExtendedFloat80 {mant: 9223372036854775808, exp: -62};
        let c = ExtendedFloat80 {mant: 6582018229284824064, exp: -211};
        check_mul(a, b, c);

        // Normalized (128-bit mantissa)
        let a = ExtendedFloat160 {mant: 242833611528216130005140556221773774848, exp: -277};
        let b = ExtendedFloat160 {mant: 170141183460469231731687303715884105728, exp: -126};
        let c = ExtendedFloat160 {mant: 121416805764108065002570278110886887424, exp: -275};
        check_mul(a, b, c);

        // Check with integers
        // 64-bit mantissa
        let mut a = ExtendedFloat80::from_u8(10);
        let mut b = ExtendedFloat80::from_u8(10);
        a.normalize();
        b.normalize();
        assert_eq!(a.mul(&b).into_f64(), 100.0);

        // 128-bit mantissa
        let mut a = ExtendedFloat160::from_u8(10);
        let mut b = ExtendedFloat160::from_u8(10);
        a.normalize();
        b.normalize();
        assert_eq!(a.mul(&b).into_f64(), 100.0);

        // Check both values need high bits set.
        let a = ExtendedFloat80 { mant: 1 << 32, exp: -31 };
        let b = ExtendedFloat80 { mant: 1 << 32, exp: -31 };
        assert_eq!(a.mul(&b).into_f64(), 4.0);

        // Check both values need high bits set.
        let a = ExtendedFloat80 { mant: 10 << 31, exp: -31 };
        let b = ExtendedFloat80 { mant: 10 << 31, exp: -31 };
        assert_eq!(a.mul(&b).into_f64(), 100.0);
    }

    fn check_imul<M: Mantissa>(mut a: ExtendedFloat<M>, b: ExtendedFloat<M>, c: ExtendedFloat<M>) {
        a.imul(&b);
        assert_eq!(a, c);
    }

    #[test]
    fn imul_test() {
        // Normalized (64-bit mantissa)
        let a = ExtendedFloat80 {mant: 13164036458569648128, exp: -213};
        let b = ExtendedFloat80 {mant: 9223372036854775808, exp: -62};
        let c = ExtendedFloat80 {mant: 6582018229284824064, exp: -211};
        check_imul(a, b, c);

        // Normalized (128-bit mantissa)
        let a = ExtendedFloat160 {mant: 242833611528216130005140556221773774848, exp: -277};
        let b = ExtendedFloat160 {mant: 170141183460469231731687303715884105728, exp: -126};
        let c = ExtendedFloat160 {mant: 121416805764108065002570278110886887424, exp: -275};
        check_imul(a, b, c);

        // Check with integers
        // 64-bit mantissa
        let mut a = ExtendedFloat80::from_u8(10);
        let mut b = ExtendedFloat80::from_u8(10);
        a.normalize();
        b.normalize();
        a.imul(&b);
        assert_eq!(a.into_f64(), 100.0);

        // 128-bit mantissa
        let mut a = ExtendedFloat160::from_u8(10);
        let mut b = ExtendedFloat160::from_u8(10);
        a.normalize();
        b.normalize();
        a.imul(&b);
        assert_eq!(a.into_f64(), 100.0);

        // Check both values need high bits set.
        let mut a = ExtendedFloat80 { mant: 1 << 32, exp: -31 };
        let b = ExtendedFloat80 { mant: 1 << 32, exp: -31 };
        a.imul(&b);
        assert_eq!(a.into_f64(), 4.0);

        // Check both values need high bits set.
        let mut a = ExtendedFloat80 { mant: 10 << 31, exp: -31 };
        let b = ExtendedFloat80 { mant: 10 << 31, exp: -31 };
        a.imul(&b);
        assert_eq!(a.into_f64(), 100.0);
    }
}